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Abstract: The study considers a combination of symmetric and asymmetric boundary conditions 

on thermal explosion with Arrhenius kinetics for a slab. Realistic assumptions will convert the 

energy conservation equation into dimensionless form, and the resulting nonlinear ordinary 

differential equation under various boundary conditions will be analytically solved using Frank-

Kamanetskii's methods. This analytical method will yield the critical ignition parameters and the 

critical ignition temperature. The results were compared with previous studies in literature.   
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Introduction 

It was demonstrated that the original formulation of the problem by 

Semenov (1928) correctly characterizes the phenomena and 

explains the cause of the explosion after a review and analysis of 

the historical evolution of the thermal-explosion theory. Semenov 

demonstrated that an explosion happens when a solid's internal 

heat creation surpasses its external heat dissipation. According to 

Frank-Kamenetskii's (1969) critique of Semenov's reasoning, the 

explosion was caused by a temperature differential between the 

solid's surface and center. But his well-known and clever small-

temperature model and the resulting differential equation solution 

warped the issue and slowed down the process of fully 

comprehending it. 

Frank-Kamenetskii came to the conclusion that an explosion 

happens when there is no way to solve the issue. The validity of 

Semenov's formulation was confirmed by Donaldson and Tsao's 

(2006) precise solution to the problem. The problem's physics was 

fully understood after more research on how reactant use affected 

the issue. 

Thermal Explosion may be due to a violent reaction between the 

overcharged anode and the high temperatures of the electrolytes 

that results in an exothermic reaction between the delithiated 

cathode and electrolyte by Ohsaki (2005). 

When a chemical system goes through an exothermic reaction, 

insufficient heat is extracted from the system, causing the reaction 

process to become self-heating. This results in a thermal explosion. 

However, thermal explosion theory is based on the idea that 

progressive heating raises the rate at which heat is released by the 

reaction until it exceeds the rate of heat loss from the area. At a 

given composition of the mixture and a given pressure, explosion 

will occur at a specific ignition temperature that can be determined 

from the calculation of heat loss and heat gain. 

The transition from Combustion to Explosion is caused by an 

acceleration of the reaction induced either by a raise in temperature 

or by increasing length of the reaction Chain. The first is called 

thermal explosion, and the second is called Chain explosion. 

If the heat released by the exothermic chemical reaction exceeds 

the rate at which heat is lost from the body to its surroundings, then 

an unstable build-up of heat inside a body can occur. This is 

because the increase in the internal temperature causes the reaction 

rate to increase, so more heat is generated, leading to a further 

increase in temperature. If the increase in the reaction rate 

outweighs the increase in the rate at which heat is lost to the 

surroundings, an unstable thermal runaway /explosion can occur 

(Brain, 2019). 
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Objectives of the Study 

The specific objectives of the study are to; 

i. Formulate an energy balance equation for the thermal 

explosion with Arrhenius kinetics in parallel plates; 

ii. Solve the formulated energy equation using standard 

techniques; and 

iii. Examine the effects of various boundary conditions on 

the thermal explosion with Arrhenius kinetics. 

Conceptualization/Definition of Terms 

For a better understanding of later discussions, the following 

definitions of important terms used in this study are given below. 

Definition 1.1:  (Combustion) 

Combustion: is a chemical process or a reaction between fuel and 

oxygen which releases heat and light energy. 

General Equation: 

2( )gFuel O Waste Energy    

Definition 1.2: (Chemical Kinetics) 

Chemical Kinetics: is the study of the rates of chemical reactions.   

Definition 1.3: (Steady state) 

A system is said to be steady when variables (such as velocity, 

temperature, density etc.) 

Constant with time (that is 0
x






) (Schlichting & Gersten, 2017). 

Definition 1.4: (Arrhenius Equation)    

An Arrhenius Equation:  gives the dependence of the rate constant 

of a chemical reaction on 

the absolute temperature, a pre-exponential factor and other 

constants of the reaction. 

Definition 1.5: (Boundary Conditions) 

Boundary conditions:   this condition specifies the value that a 

solution must take in some           

region of space and it is independent of time. 

Definition 1.6: (Thermal Explosion) 

Thermal Explosion: An explosion is a rapid increase in volume and 

release of energy in an  

extreme manner, usually with the generation of high temperatures 

and the release of gases. It’s    

an event that once initiated grows rapidly and initially unbounded. 

Definition 1.8: (Self-Heating) 

Self-Heating:  is a process where a material increases in 

temperature due to the release of heat    

from ongoing chemical reactions and without drawing heat from its 

surroundings. 

Definition 1.9: (Criticality) 

The critical point of a function of a single real variable, f(x) is a 

value   in the domain of f   

where its derivative is 0 (i.e.
' ( ) 0f x  ).  

This is the conversion of one form of energy (such as nuclear, 

electrical, chemical energy) into    

heat energy in a medium. A lot of heat transfer applications involve 

heat generation and this heat 

generation according to (Azim and Chowdhury, 2013) modifies the 

temperature distribution.  

Heat transfer by natural convection significantly influences 

temperatures of power generating systems (Theodore et al., 2011). 

Statement of Problem 

The study of thermal explosion with Arrhenius kinetics has 

attracted a great deal of interest   

from researchers in the past few decades because of its occurrence, 

as seen in volcanic eruption and nuclear plants. However, 

relatively little is known about the combined mixture of symmetric 

and asymmetric conditions on thermal explosion with Arrhenius 

kinetics for a slab; hence, this study. 

Methodology 

The study presents the fundamental energy equation for the 

thermal explosion with Arrhenius kinetics in parallel plates under 

varied boundary conditions. First, the fundamental equation of 

energy is presented, followed by a discussion of the model 

assumptions that were used to create the governing equations. The 

dimensionless Heat transport properties are covered and variables 

utilized in non-dimensionalizing the constructed equation are 

defined. A demonstration and discussion of the integration 

technique used to solve the given problem are provided. 

Basic Equations 

Equation of Conservation of Energy 

The law of conservation of energy states that the amount of work 

done on a system and the amount of heat it receives cause the 

system's internal energy to rise proportionately. The energy 

equation controls heat transport in a medium when chemical 

reactions and insignificant radiant energy are present; 

2

g

DT
Cp K T e

Dt
         (1) 

Where  the specific heat at constant pressure, T is the temperature,  

is the viscous dissipation function, k is the thermal conductivity,   

is the heat generation term. 

Problem Formulation 

A stationary one-dimensional parallel plate of a reacting material 

having thickness 2L with its plane surfaces maintained at different 

boundary conditions is being considered. 

Figures 1 and 2 show the geometry and co-ordinates system of our 

problem.  



IRASS Journal of Multidisciplinary Studies Vol-1, Iss-3 (December - 2024): 57-64 

© Copyright IRASS Publisher. All Rights Reserved 
59 

 

 

Results and Discussion 

The energy equation in (3.1) above was reduced with some 

assumptions to give 

   
2

2
exp( ) 0

d T Ek A R
RTdx

     (3.2) 

An equation (3.2) is the energy equation subject to some 

assumptions used. 

The temperature T and distance y are rescaled so as to compare 

terms in the equations without reference to units. The temperature 

equations are non-dimensionalized with the variables; 

1
( ) ( )A A

A A

x
z

l

E
T T T T

RT T








    


 (3.4) 

The equation (3.2) is reduced to give a dimensionless temperature 

equation 
2 2

2 2
( )( )exp( )exp( )

1
R

A A

d r E E
A H

dz k RT RT


 


   



 (3.5) 

    Where 

  2

2
( )( )exp( )exp( )

1
R

A A

r E E
A H

k RT RT





 



   (3.6) 

is the Frank-Kamenetskii number. 

2

2
exp( )

1

d

dz

 



 


     (3.7) 

When 0  , equation r (3.7) reduced becomes; 

 

    
2

2
exp( )

d

dz


        (3.8) 

The linear ordinary differential equation (3.8) can be solved by 

multiplying both of its sides by 

2
d

dz


 

2

2
2 2 exp( ) 0

d d d

dz dz dz

  
      (3.9) 

By integrating both sides of Equation (3.9), we have; 

   2

0( ) 2 exp( )
d

A
dz


       (4.0) 

  NOTE: 0A is the constant of integration.     

By separating the variables in Equation (4.0) above gives, 

0 2 exp( )

d
dz

A



 




 (4.1) 

Integrating both sides, we have; 

   

0 2 exp( )

d
dz

A



 



     (4.2) 

Note that the left hand side is integrated by replacing 0A with

2 A . 

 

   
1

2 2 exp( )

d
z A

A



  
 




   (4.3) 

By factoring out 2 A and multiplying both sides by 2 A , we 

have, 

1
2

1 exp(0)

d
Az B

A





 




     (4.4) 

Where B =   12 A A  

By letting 2ln 2
dp

P
p

      L.H.S of Equation (4.4) above 

becomes; 

   1 2 1 2
2 2

1 1

dp dp

A P p A P   
  

 
   (4.5) 

Equation (4.5) becomes, 

 1 2
2

1

dp

p A P 



 = 2 Az B    (4.6) 

Dividing both sides by -2 gives, 

 2 1 2

dp A
z B

P A




 




  (4.7) 

Letting, 

 1 cosh ,P A q the L.H.S of the Equation becomes; 

 
1

1 2

( sinh )

(cosh 1)

A q dq
dq q

A q




 


 

  (4.8) 

 
From the above, 

2ln P   and 1 1cosh cosh ( exp( 2)A q q A      
Hence, Equation (4.8) becomes, 

exp( ) cosh(
2 2

A
A z B

     (4.9) 

Divide both sides by A  

 
( )

2exp cosh
2

A
z B

A






      (5.0) 

Squaring both sides, and taking the reciprocal, we have; 
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2

exp( )

cosh (
2

A

A
z B








      (5.1) 

Taking ln of both sides, we have; 

2

( ) ln( )

cosh
2

A
z

A
z B








  (5.2) 

Equation (5.2) represents the temperature equation of the parallel 

plates with Arrhenius kinetics which will be analyzed for four (4) 

different boundary conditions. 

Here, A and B are integration constants, z is the dimensionless 

distance and   is the Frank-Kamenetskii parameter. 

Case 1: Symmetric Boundary Condition 

The symmetric boundary condition given as; 

  T = T  at x = 0

T = T  at x = 2l

A

A





 (5.3) 

is non-dimensionalized with the variables in Equation (3.4) to give, 

 = 0 at z = 0

 = 0 at z = 2









     (5.4) 

Substituting the boundary condition  (0) = 0 into Equation (5.2) 

above gives, 

   
2

0 ln
cosh ( )

A

B

 
  

 

  (5.5)  

Equation (5.5) reduced to; 
2cosh ( )A B   

    2coshA B                                                                  
(5.6) 

By substituting the boundary condition (2) = 0 into Equation 

(5.2) above gives, 

0=ln
2

2

cosh

cosh 2 cos

B

B B

 
 

 

2
2

cosh

B

B
    (5.7) 

Taking exponential of both sides gives, 

2 2cosh cosh ( 2 coshB B B  )  (5.8)    

2 coshB B B   (5.9) 

 
2

2
cosh

B

B
      (6.0) 

Squaring both sides and dividing by 2  

  
2

2

2

cosh

B

B
       (6.1) 

Since ( ),B   is plotted against B to obtain cr  and the 

value of B  (6.2) 

A graph of  against B for symmetric boundary condition. 

 

From the graph above 0.878cr  and the value of

1.193B  from equation (5.6),
2cosh (1.193)A  =3.240  

(6.3) 

Substituting the values of ,A B  and cr  into equation 

(5.2) gives, 

2

3.240
( ) ln

(0.878)3.240
cosh ( 1.193

2
z



 
 
  
 

 
 

       (6.4) 

2

3.240
( ) ln

cosh (1.193 1.193z


 
   

 

    (6.5) 

The graph of max  against z is plotted and discussed. 

Case 2: Asymmetric Boundary Condition 

The asymmetric boundary condition 

   
T = T  at X= 0

T = T  at X = 2l

A

S





    (6.6) 

is non-dimensionalized with the variables in Equation (3.4) to give 

 = 0 at z = 0

 =  at z = 2S



 





       (6.7) 

Substituting the boundary condition (0) 0  into equation (5.2) 

gives,                                                                                           

     
2

0 ln
cosh ( )

A

B

 
  

 
    (6.8) 

2coshA B         (6.9) 

By substituting the boundary condition (2) S  into equation 

(5.2) gives,  
2

2

cosh
ln

cosh ( 2 cosh )
S

B

B B




 
  

 

    (7.0) 

By taking exp of both sides gives, 

   Exp ( )S =
2

2

cosh

cosh ( 2 cosh )

B

B B 

     (7.1) 

Again, taking square root of both sides, 

cosh
exp( )

cosh( 2 cosh )
S

B

B B



 



       (7.2) 

,A B
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 cosh( 2 cosh ) exp 2 coshSB B B       (7.3)

12 cosh cosh { exp( 2)cosh }SB B B       

(7.4) 

Squaring both sides and dividing through by 
22cosh B  

 
2

1cosh { exp( 2)cosh }1

2 cosh

SB B

B




   
  

 

  (7.5)   

Here, cr  is obtained by plotting   against B , while the surface 

is assumed to be at temperature 0.01.S                     

 

 

Plot of   against B for asymmetric boundary condition. 

From the graph above 0.874cr   and the value of 

1.197B                                                    

From equation (6.9),  

2cosh (1.197) 3.262A     (7.6) 

 

Substituting ,A B and cr  into equation (5.2) gives, 

2

3.262
( ) ln

(0.874)3.262
cosh ( 1.197

2

Z

 
 
 
 

 
 

  (7.7) 

             

2

3.262
( ) ln

cosh (1.194 1.197)
Z

Z


 
  

 
 (7.8) 

 

The graph of max and z  is plotted, and therefore discussed 

below. 

Results Discussion and Findings 

In this section, effect of the various boundary conditions are 

presented graphically and their effects on the temperature profiles 

are discussed. Except in cases where they are indicated as variable 

parameters, the following constant values are assumed for the 

relevant parameters: and. 

Figure 4.1 represents the plots of  against B and against z. 

The plots in figure 4.1a, shows that moving along B , the Frank 

Kamenetskii parameter , start increasing from zero to the 

maximum value of 0.878   at 1.193.B   The maximum 

point 0.878   beyond which the curve of   starts decreasing 

is the critical Frank Kamenetskii cr . Beyond cr , the curve 

decreases monotonically to zero and maintains zero value for 

5.5.B    

Figure 4.1b; depict a parabolic curve bounded above for the plot of 

max against the dimensionless distance z.  

It is seen that, max  increases uniformly to a peak value of 1.176. 

Also, along z, max increases uniformly for to a zero for Z > 1 

Figure 4.1 therefore reveal that a parallel plate of dimensionless 

thickness of 2 with Arrhenius Kinetic will have a critical Frank 

Kamenetskii value of 0.878cr  and a critical maximum 

temperature of max 1.176cr  when the walls are subjected to 

symmetric dimensionless temperature ( 0)  . 

 

 

Figure 4.1: Graphs of (a)   against B and (b)  against Z  for 

symmetric boundary condition. 
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However, figure 4.2 represents the graphs of  and B and   and 

z. The plots in figures 4.2a, shows that, moving along B , the 

Frank Kamenetskii parameter increases from zero to a maximum 

value of 0.874   at the point where B =1.197. The 

maximum point 0.874   where the value of  starts 

decreasing is the critical Frank Kamenetskii cr . Beyond cr  the 

curve decreases monotonically to zero and maintain zero value for

5.5B   

Figures 4.2b, shows a parabolic curve of max against the 

dimensionless distance z. it is seen that, max increases uniformly 

to a peak value of 1.176. Also, along z, max  increases uniformly 

for       z <1 and decreases uniformly to zero for z >1 

Figure 4.2 therefore reveals that the parallel plates will have a 

critical Frank Kamenetskii value of 0.874cr  and a critical 

maximum temperature ( 0)   at z = 0 and ( 0.01)S  

at z =2. 

 

 

Figure 4.2:  plots (a)  against B and (b)  against z for 

asymmetric boundary condition 

Conclusion 
From this paper, the following significant conclusions were drawn: 

i. The maximum critical temperature max cr  increases 

with increasing S and decreasing cr for the 

asymmetric boundary condition model. 

ii. The symmetric boundary condition model serves a 

limiting case to the asymmetric boundary condition 

model.  

iii. The maximum critical temperature max cr and the 

critical Frank-Kamenetskii parameter cr of the parallel 

plates changes significantly as the boundary conditions 

changes. 

Recommendation 

Based on the findings, it is therefore recommended that, the right 

and accurate information about the maximum critical temperature 

max cr and the critical Frank-Kamenetskii parameter cr of 

materials should be known and taken into consideration in 

industries and working environments. This is to ensure safety of 

both workers and the environment. 
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