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Abstract: This article addresses the algorithmics of linear systems with polynomial 

coefficients in one variable, highlighting their similarities with the treatment of rational 

fractions. Emphasis is placed on the importance of efficiently utilizing fast matrix 

multiplication. We consider the linear system in the form 𝐴(𝑋)𝑌(𝑋) = 𝐵(𝑋), where 𝐴 is an 

𝑛 × 𝑛 matrix of polynomials with a non-zero determinant and 𝐵 is a vector of polynomials. 

We establish clear notations to facilitate understanding of the concepts. The article also 

presents complexity estimates related to matrix multiplication and evaluation-

interpolation. Key results include the computation of the series expansion of 𝐴−1𝐵 and the 

reconstruction of the coefficients of the rational fraction vector 𝑌 using Padé approximants. 

Newton’s method is discussed for its efficiency in the case of polynomial matrices. Finally, a 

detailed analysis of resolution algorithms, including those of Storjohann, is provided, 

highlighting recent advances in computing the coefficients of rational solutions of linear 

systems. The algorithmics of linear systems with polynomial coefficients in one variable is 

very similar to that of rational fractions. Moreover, it is important to leverage fast matrix 

multiplication. 
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Algorithmic resolution; Padé approximants; Polynomial matrices. 
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Introduction 
The study of linear systems with polynomial coefficients in 

one variable presents unique challenges that require specific 

algorithmic approaches. These systems, often represented in the 

form 𝐴(𝑋)𝑌(𝑋) = 𝐵(𝑋), where 𝐴 is an 𝑛 × 𝑛 matrix of 

polynomials, highlight complex algebraic structures and 

interactions between coefficients that differ from those of classical 

linear systems with rational coefficients. [1] One of the main 

similarities between these two domains lies in the treatment of 

rational fractions, where the development of efficient techniques 

has enabled significant advances. The importance of fast matrix 

multiplication is also emphasized, offering insights into the 

efficiency of resolution methods. In this article, we highlight 

essential notations and concepts to facilitate understanding of the 

solutions to these systems. We also propose complexity estimates 

concerning matrix multiplication and evaluation-interpolation 

techniques, which are crucial for optimizing the resolution process. 

The presented results include the computation of the series 

expansion of 𝐴−1𝐵 as well as the reconstruction of the coefficients 

of the rational fraction vector 𝑌 using Padé approximants, a 

method recognized for its ability to handle polynomial data. 

Furthermore, we will examine the efficiency of Newton’s method 

in the context of polynomial matrices. Finally, a detailed 

discussion of resolution algorithms, including those developed by 

Storjohann, will be provided, highlighting recent advances that 

enable more efficient computation of the coefficients of rational 

solutions of linear systems with polynomial coefficients. We 

consider the linear system: 

𝐴(𝑋)𝑌(𝑋) = 𝐵(𝑋) 

where 𝐴 and 𝐵 are given and 𝑌 is unknown. 𝐴 is an 𝑛 × 𝑛 matrix 

of polynomials, regular (with a non-zero determinant), and 𝐵 is a 

vector of polynomials. Equivalently, one can view 𝐴 (or 𝐵) as a 

polynomial with matrix (or vector) coefficients. To fix the 

notations, we assume deg𝐴 ≤ 𝑑 and deg𝐵 < 𝑑. We denote: 

 ℳ𝑚,𝑘(𝑅): the set of 𝑚 × 𝑘 matrices with coefficients in 

𝑅, 

 𝐾[𝑋]𝑑: the set of polynomials of degree at most 𝑑 with 

coefficients in the field 𝐾. 

The function 𝑀 is such that multiplication in 𝐾[𝑋]𝑑 costs at most 

𝑀(𝑑) operations in 𝐾. The exponent 𝜔 is such that multiplying 

two 𝑛 × 𝑛 matrices with coefficients in 𝐾 costs MM(𝑛) = 𝑂(𝑛𝜔) 

operations in 𝐾. We will also need products of matrices in 

ℳ𝑛(𝐾[𝑋]𝑑). In the most general case, this product is known to be 

executable in MM(𝑛𝑑) = 𝑂(𝑛𝜔𝑀(𝑑)) operations in 𝐾, a bound 

that we will use in complexity estimates. When the field 𝐾 contains 

enough points, this cost drops through evaluation-interpolation to 

𝑂(𝑛𝑑 + 𝑛2𝑀(𝑑)log𝑑); under the same conditions, by choosing 

points in geometric progression, this complexity can be further 

reduced to 𝑂(𝑛𝑑 + 𝑛2𝑀(𝑑)). 

https://irasspublisher.com/journal-details/IRASSJMS
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Input 

𝐴 ∈ ℳ𝑛(𝐾[𝑋]𝑑), 𝐵 ∈ ℳ𝑛,1(𝐾[𝑋]𝑑−1). 

Output 

The vector of rational fractions 𝑌 such that 𝐴𝑌 = 𝐵. 

 Compute the series expansion of 𝐴−1𝐵 to precision 2𝑛𝑑. 

 Reconstruct the coefficients of 𝑌 using Padé 

approximants. [2] 

From Series to Rational Solutions 

A first observation is that the structure of the sought solution is 

given by Cramer’s formulas. 

lemma 

The system has a solution whose coordinates are rational fractions. 

Its numerators and denominators have degrees bounded by 𝑛𝑑 − 1 

and 𝑛𝑑. 

Proof. The system can be rewritten as: 

𝐴1𝑦1 +⋯+ 𝐴𝑛𝑦𝑛 = 𝐵, 

where 𝑦𝑖 is the 𝑖-th coordinate of 𝑌 and 𝐴𝑖 is the 𝑖-th column of 𝐴. 

Cramer’s formula: 

det(𝐴1, … , 𝐴𝑖−1, 𝐵, 𝐴𝑖+1, … , 𝐴𝑛) = 𝑦𝑖det(𝐴), 

is obtained by substituting 𝐵 with its value in the left-hand side and 

expanding the determinant. Thus, 𝑦𝑖 is the quotient of determinants 

of matrices belonging to ℳ𝑛(𝐾[𝑋]𝑑), which necessarily have a 

degree at most 𝑛𝑑 − 1 for the numerator and 𝑛𝑑 for the 

denominator. ◻ 

Algorithm 1 for resolution is justified by the quasi-optimal 

complexity of Padé approximants. In all subsequent algorithms, it 

is the search for a series solution that will dominate the complexity. 

[3] 

Development as a Rational Fraction 

Newton’s method works for any invertible matrix of series. With 

this algorithm, computing the rational fraction requires 

𝑂(𝑛𝑀(𝑛𝑑)) operations in 𝐾. It is possible to improve efficiency 

when the matrix is a matrix of polynomials. The basis of this 

improvement is contained in the following lemma. 

lemma 

Let 𝐴(𝑋) ∈ ℳ𝑛(𝐾[𝑋]𝑑) and 𝐵(𝑋) ∈ ℳ𝑛,𝑚(𝐾[𝑋]𝑑−1), with 𝐴 

invertible. For all 𝑘, there exists a matrix 𝐵𝑘 ∈ ℳ𝑛,𝑚(𝐾[𝑋]𝑑−1) 

such that: 

𝐴−1𝐵 = 𝑎0 + 𝑎1𝑋 +⋯+ 𝑎𝑘−1𝑋
𝑘−1 + 𝑋𝑘𝐴−1𝐵𝑘 , 

where 𝑎𝑖 ∈ ℳ𝑛,𝑚(𝐾). 

Input 

𝐴, 𝐵, 𝑘, and 𝑆 = 𝐴−1 mod 𝑋𝑘. 

Output 

𝑎0, … , 𝑎𝑘−1 and 𝐵𝑘 defined by equation (11.2). 

1. Compute 𝑆𝐵 =: 𝑎0 +⋯+ 𝑎𝑘−1𝑋
𝑘−1 mod 𝑋𝑘. 

2. Compute 𝐵𝑘 = (𝐵 − 𝐴(𝑎0 +⋯+ 𝑎𝑘−1𝑋
𝑘−1)) /𝑋𝑘. 

3. Return 𝑎0, … , 𝑎𝑘−1, 𝐵𝑘. 

Proof. If the 𝑎𝑖 are the coefficients of the series expansion of 

𝐴−1𝐵, then: 

𝐵 − 𝐴(𝑎0 +⋯+ 𝑎𝑘−1𝑋
𝑘−1) 

is a matrix of ℳ𝑛,𝑚(𝐾[𝑋]𝑑+𝑘−1) which, by construction, is 

divisible by 𝑋𝑘, hence the lemma. ◻ 

This result translates into Algorithm 2. The following proposition 

estimates the cost of this algorithm. [4] 

Proposition 

Let 𝐴 ∈ ℳ𝑛(𝐾[𝑋]𝑑) with 𝐴(0) invertible, then we can compute 

the first 𝑁𝑑 coefficients of 𝐴−1 in 𝑂(𝑛𝑁𝑀(𝑑)𝑑) operations in 𝐾. 

For 𝐵 ∈ ℳ𝑛,1(𝐾[𝑋]𝑑−1), we can compute the first 𝑁𝑑 coefficients 

of 𝐴−1𝐵 in 𝑂(𝑛2𝑁𝑀(𝑑)𝑑) operations in 𝐾. 

Proof. The algorithm first computes the inverse 𝑆 = 𝐴−1 mod 𝑋𝑑 

using Newton’s algorithm, in 𝑂(MM(𝑛𝑑)) = 𝑂(𝑛𝑀(𝑑)) 

operations in 𝐾. Then, we apply the above algorithm 𝑁/𝑑 times 

with 𝑘 = 𝑑 to compute 𝑑 coefficients and a new 𝐵(𝑖+1)𝑑 at each 

iteration. If we start with 𝐵0 = 𝐼, the result provides the first 𝑁 

coefficients of 𝐴−1; if 𝐵0 = 𝐵, then we obtain the coefficients of 

𝐴−1𝐵. The two steps of the algorithm (with 𝑘 = 𝑑) cost 

MM(𝑛𝑑) = 𝑂(𝑛𝑀(𝑑)) operations in 𝐾 if 𝐵 has 𝑛 columns, 

𝑂(𝑛2𝑀(𝑑)) if it has only one. With this algorithm, computing the 

rational fraction solution of (1) requires 𝑂(𝑛3𝑀(𝑑)) operations in 

𝐾. [5] ◻ 

Storjohann’s Algorithm 

Storjohann’s algorithm allows computing the first 𝑁 coefficients of 

the series expansion of 𝐴−1𝐵 in 𝑂(𝑛𝜔−1𝑁log𝑁𝑀(𝑑)) operations 

in 𝐾. If 𝜔 < 3, this quantity grows with 𝑛 slower than the size of 

the inverse 𝐴−1, which is therefore not computed entirely. Thus, 

solving the following linear system has a cost of 

𝑂(𝑛𝑀(𝑑)log(𝑛𝑑)) operations in 𝐾. 

Input 

𝐴, 𝐵, 𝑘, and 𝑆 = [𝐴−1]2𝑑
2𝑘−2𝑑+1. 

Output 

𝐵𝑘 defined by equation (11.2). 

 Compute 𝑈 := [𝑆𝐵]𝑘−𝑑
𝑑−1 . 

 Compute 𝐵𝑘 : =
[𝐵−𝐴𝑈]𝑘−𝑑

𝑑−1

𝑋𝑘 . 

 Return 𝐵𝑘. 

This method relies on a "divide and conquer" technique, and on 

grouping intermediate calculations to replace groups of 𝑛 matrix-

vector products with matrix-matrix products. To begin, we can 

modify the algorithm for developing 𝐴−1𝐵 from the previous 

section to compute 𝐵𝑘 without calculating all the coefficients 

𝑎0, … , 𝑎𝑘−1. The input required is smaller, and the complexity is 

lower when 𝑘 is large compared to 𝑑. For a series 𝑉 = 𝑣0 + 𝑣1𝑋 +

⋯, we denote: 

[𝑉]𝑎
𝑏 : = 𝑣𝑎𝑋

𝑎 +⋯+ 𝑣𝑎+𝑏𝑋
𝑎+𝑏 , 

with the convention that coefficients of negative index of 𝑉 are 

zero. 
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Proof 

To prove the correctness of this algorithm, we must ensure that 

series truncations are sufficient to compute the same polynomial 

𝐵𝑘 as before. For the first step of the algorithm, it suffices to 

observe that since 𝐵 has degree at most 𝑑 − 1, the coefficient of 𝑋𝑖 

in 𝐴−1𝐵 depends only on [𝐴−1]𝑖−𝑑+1
𝑑+1 , for all 𝑖. Therefore, the 

coefficients calculated by this first step are the same as the 

previous 𝑎𝑖, for 𝑖 = 𝑘 − 𝑑,… , 𝑘 − 1. Next, we need to compute 

[𝑋𝑘𝐵𝑘]𝑘−𝑑
𝑑−1 . Extracting the coefficients from equation (2) gives: 

[𝑋𝑘𝐵𝑘]𝑘−𝑑
𝑑−1 = [𝐵 − 𝐴(𝑎0 +⋯+ 𝑎𝑘−1𝑋

𝑘−1)]𝑘−𝑑
𝑑−1 , 

which concludes the proof. An important observation regarding 

this algorithm is that the same polynomial 𝑆 can be used to 

compute 𝐵𝑖+𝑘 for all 𝑖. The idea is then to group several vectors 𝐵𝑖 

and compute the corresponding 𝐵𝑖+𝑘 using matrix-matrix products. 

Note the resemblance between this idea and that of the Keller-

Gehrig algorithm. Thus, if we know 𝐵0, 𝐵2𝑚, … , 𝐵2𝑠𝑚 and 

[𝐴−1]2𝑑
2𝑘−2𝑑+1, then computing the next vectors 𝐵(2𝑠+1)𝑚 requires 

only 𝑂(𝑛𝜔−1𝑠𝑀(𝑑)) operations in 𝐾. By iterating this idea, 

starting from 𝐵0 and assuming known [𝐴−1]2𝑑
2𝑘−2𝑑+1 for 𝑘 =

0,… , log(𝑁𝑑) =: 𝑘max, we first obtain 𝐵0, 𝐵2𝑘max , then at the next 

step 𝐵0, 𝐵2𝑘max−1, 𝐵2𝑘max , 𝐵3⋅2𝑘max−1, and so on until computing the 

entire sequence 𝐵0, 𝐵𝑑 , 𝐵2𝑑 , …. [6] 

Storjohann’s Algorithm 

Input 

𝑆 = [𝐴−1]0
𝑑−1, 𝑇 = [𝐴−1]2𝑘−2𝑑+1

2𝑑−2  and 𝐵2𝑘−𝑑 defined by (2) with 

𝐵 = 𝐼. 

Output 

𝐵2𝑘+1−𝑑 and [𝐴−1]2𝑘+1−2𝑑+1
2𝑑−2 . 

1. Compute [𝐴−1]2𝑘+1−2𝑑+1
2𝑑−2 = [𝑇𝐵2𝑘−𝑑]2𝑘+1−2𝑑+1

2𝑑−2 . 

2. Compute 𝐵2𝑘+1−𝑑 : = [𝐴𝑇𝐵2𝑘−𝑑]2𝑘+1−𝑑
𝑑−1 . 

3. Compute [𝐴−1]2𝑘+1−2𝑑+1
𝑑−1 =

[𝑋2𝑘+1−𝑑𝐵2𝑘+1−𝑑𝑆]2𝑘+1−𝑑
𝑑−1 . 

4. Return 𝐵2𝑘+1−𝑑 and [𝐴−1]2𝑘+1−2𝑑+1
2𝑑−2 . 

Algorithm – Development of 𝑨−𝟏 – Power-of-two Indices 

We obtain 𝐵𝑁𝑑 in 𝑂(𝑘max𝑛
𝜔−1𝑁𝑀(𝑑)𝑑) operations in 𝐾. By then 

multiplying these vectors by [𝐴−1]0
𝑑, we finally obtain the first 𝑁 

coefficients of 𝐴−1𝐵 for the same cost. It remains to see how to 

compute the [𝐴−1]2𝑘−2𝑑+1
2𝑑−2 . Again, the starting point is the identity, 

with 𝐵 = 𝐼, 𝑘 = 𝑚, and 𝑘 = 𝑝: 

𝐴−1 = 𝑎0 +⋯+ 𝑎𝑚−1𝑋
𝑚−1 + 𝑋𝑚𝐴−1𝐵𝑚, 

= 𝑎0 +⋯+ 𝑎𝑚−1𝑋
𝑚−1

+ 𝑋𝑚(𝑎0 +⋯+ 𝑎𝑝−1𝑋
𝑝−1 + 𝑋𝑝𝐴−1𝐵𝑝)𝐵𝑚. 

The second line is obtained by substituting the value of 𝐴−1 given 

by the first line with 𝑚 = 𝑝. These equations imply for all 

𝑚 + 𝑝 ≤ 𝑑: 

[𝐴−1]𝑚+𝑝
𝑑−1 = [𝐴[𝐴−1]2𝑑−2

𝑝−2𝑑+1
𝐵𝑚]𝑚+𝑝

𝑑−1
𝑋𝑝, 

= [[𝐴−1]𝑝+𝑑−2
𝑑−1 𝐵𝑚]𝑚+𝑝

𝑑−1
. 

The Algorithm follows using this identity with 𝑚 = 2𝑘 − 𝑑, 

𝑝 = 2𝑘, and ℓ = 𝑑 − 1. To summarize, these algorithms lead to 

the following result. [7] 

Theorem Storjohann, 2002 

Let 𝐴 be an 𝑛 × 𝑛 polynomial matrix of degree 𝑑 with 𝐴(0) 

invertible and 𝐵 a polynomial vector of degree at most 𝑑 − 1, then 

we can compute the numerator and denominator of 𝐴−1𝐵 in 

𝑂(𝑛𝑀(𝑑)log(𝑛𝑑)) operations in 𝐾. [8] 

Theorem Storjohann, 2005 

Let 𝐴 be an 𝑛 × 𝑛 invertible matrix containing integers of binary 

size at most 𝑏 and let 𝐵 be an 𝑛 × 1 vector containing integers of 

size 𝑂(𝑏). We can compute the numerator and denominator of 

𝐴−1𝐵 in 𝑂(𝑛log(𝑛)𝑀(𝑑)log(𝑑)) binary operations, where 

𝑑 = 𝑏 + log𝑛. [9] 

Conclusion 

This article explored the algorithmics of linear systems 

with polynomial coefficients in one variable, highlighting 

innovative and efficient approaches for their resolution. By 

considering the system of the form 𝐴(𝑋)𝑌(𝑋) = 𝐵(𝑋), we were 

able to establish significant links between these systems and the 

treatment of rational fractions, thus illustrating the relevance of 

these concepts in the field of computational algebra. We 

emphasized the crucial importance of fast matrix multiplication, as 

well as evaluation-interpolation techniques, which play a central 

role in optimizing resolution algorithms. The obtained results, such 

as the series expansion of 𝐴−1𝐵 and the reconstruction of the 

coefficients of the rational fraction vector 𝑌 using Padé 

approximants, demonstrate the power of the proposed methods. 

Furthermore, the discussion around Newton’s method revealed its 

efficiency in the context of polynomial matrices, highlighting 

promising avenues for future research. The analysis of resolution 

algorithms, particularly those developed by Storjohann, highlights 

recent advances in the field and paves the way for further 

improvements in computing solution coefficients. In summary, we 

hope that the results and methods presented in this article will 

provide a solid foundation for future work and contribute to the 

advancement of algorithmic techniques in the treatment of linear 

systems with polynomial coefficients. 
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